FLUOR

A CASE STUDY - RENEWABLE METHANOL FROM BIOMASS GASIFICATION AS MARINE TRANSPORT FUEL

Global Syngas Technologies Conference, 2024

San Diego, California, USA

Author and Presenter: Sunil Singhal (Fluor Fellow- Gasification and Syngas Applications)

Co-Authors: Ravi Ravikumar, Soumya Jyoti Choudhury, Shivam Singh, Keya Ganatra

© 2024 Fluor Corporation. All Rights Reserved. Fluor is a registered service mark of Fluor Corporation.

AGENDA

- >Why Renewable Methanol?
- Renewable Methanol Market Scenario
- Biomass Availability
- Biomass to Methanol Case Study:
 - Block Flow Diagram
 - Basis and Assumptions
 - Plant Performance Summary
 - OPEX
 - Simple Payback Period versus Methanol Price
 - Simple Payback Period versus Feedstock Price
- Summary

FLUOR

WHY RENEWABLE METHANOL

- > Easy slip-in solution to decarbonize shipping industry
- > No sulfur emissions
- > Well-proven technologies, large scale production possible
- > Liquid at ambient conditions \rightarrow Easy to blend, handle, store and transport
- Versatile chemical for direct use as well as to produce various derivatives like DME, MEG, gasoline, SAF, olefins, formaldehyde etc.
- Can also serve as H2 carrier

RENEWABLE METHANOL MARKET SCENARIO

- > Global renewable methanol capacity: 0.7 MMTPA (as on 2024)
- > Renewable methanol capacity expected to reach 20 MMTPA by 2028-2030
- Shipping industry alone is expected to consume ~18 MMTPA by 2030 led by industry giants like Maersk, Evergreen, COSCO, CMA CGM etc
- ~80 methanol ships have been ordered by giants of shipping industry like Maersk, Evergreen, COSCO, CMA CGM etc

BIOMASS AVAILABILITY IN USA

FILNAME

BLOCK FLOW DIAGRAM

BASIS AND ASSUMPTIONS

Parameter	Case 1	Case 2	Case 3	Case 4	
Case Definition	Biomass Power Plant		NGCC Power Plant		
	w/o CCS	w/ CCS (1)	w/ Partial CCS (2)	w/ CCS (1)	
Feed to Gasification, sTPD (w/ 15-20 wt% moisture)	3,000	3,000	3,000	3,000	
Biomass Feedstock Cost, USD / sTon	60	60	60	60	
Raw Water Cost, USD / 1000 Gallon	7	7	7	7	
Natural Gas Cost, USD / MMBtu	N.A.	N.A.	3	3	
IRA CCS Credit, USD/MT (USD/sTon)	N.A.	85 (77)	N.A.	85 (77)	
Gasifier Type	Fluidized Bed				

Notes:

1)100% capture and sequestration of by-product CO_2 from CO_2 Removal Unit.

2) Partial capture and sequestration of by-product CO_2 from CO_2 Removal Unit to match the carbon intensity of Case 1.

PLANT PERFORMANCE SUMMARY

Parameter	Case 1	Case 2	Case 3	Case 4
Case Definition	Biomass Power Plant		NGCC Power Plant	
	w/o CCS	w/ CCS	w/ Partial CCS	w/ CCS
Methanol Product, sTPD	1,181	1,181	1,181	1,181
CO ₂ to Sequestration, sTPD	Nil	2,574	691	2,574
Net Power Consumption, MW	47	61	50	61
Raw Water Intake, US GPM	1,739	1,739	1,739	1,739
NG Consumption, lb/h	Nil	Nil	19,524	23,576
Carbon Intensity, g CO ₂ e/MJ MeOH	2.53	-91.85	2.53 ⁽³⁾	-61.29

Notes:

Forestry residues GHG emissions for production & 100 km transportation is considered as 1.25 g CO₂e/MJ of MeOH
NG well to tank/gate maximum GHG emissions to USA Pacific Region is considered as 13 g CO₂e/MJ of NG
Carbon Intensity (CI) for Case 3 w/o CO₂ Capture and Sequestration (CCS) is 27.94 g CO2e/MJ

FLUOR

OPEX

Biomass Feedstock Biomass Boiler Fuel Natural Gas CCPP Fuel CO2 Transportation & Storage Raw Water Cost Operations & Maintenance CCS IRA Credit ---- Total Production Cost 500 288 213 270 369 400 219 330 138 300 279 OPEX (US \$/sTon of MeOH) 168 300 63 117 230 229 178 200 161 100 0 -100 -200 Case 1 Case 2 Case 3 Case 4 **Biomass Feedstock at Biomass Feedstock at Biomass Feedstock at Biomass Feedstock** \$60/Short Ton \$20/Short Ton \$40/Short Ton at \$80/Short Ton

FLUOR

FILNAME

SIMPLE PAYBACK PERIOD VERSUS METHANOL PRICE (Feedstock @ US \$ 60/sTon)

SIMPLE PAYBACK PERIOD VERSUS FEEDSTOCK PRICE (Methanol @ US \$ 600/sTon)

SUMMARY

- > Renewable methanol is a versatile chemical with a significant demand growth
- Renewable methanol from biomass gasification is a proven and cost competitive approach, allowing carbon recycle / sequestration and conversion of waste to value added product
- Biomass feedstock and O&M are the major OPEX contributors
- > CO₂ Capture and Sequestration (CCS) improves the economics significantly
- ➢ If CCS is not an option, Case 1 payback period is reasonable up to feedstock price of USD 60/sTon and methanol price ≥USD 600/sTon
- If CCS is an option, Case 4 offers best payback period followed by Case 2 & 3

REFERENCES

Articles / Open-Source Documents

1. Methanex Methanol Price Sheet, September 2024

2. Methanex Monthly Average Regional Posted Contract Price History

>Webpages

- 1. https://shipandbunker.com/news/world
- 2. <u>https://about.bnef.com/blog</u>
- 3. <u>https://www.energy.gov/</u>

STAY CONNECTED

Sunil Singhal (Fluor Fellow, Gasification & Syngas Applications) Sunil.Singhal@fluor.com Ravi Ravikumar (Executive Process Director) Ravi.Ravikumar@Fluor.com

http://www.fluor.com

http://www.linkedin.com/company/fluor

@FluorCorp

http://www.youtube.com/user/FluorCorporation