

PyroPOX: A Reliable Pathway for the Conversion of Municipal Solid Waste to Cost-Competitive Low-Carbon Fuels and Chemicals

Zach El Zahab, Martin Linck, Shaik Afzal

GTI Energy, Des Plains, IL, US

E-mail: zelzahab@gti.energy

GTI Energy Overview

We occupy a unique space between tradition and innovation

- Moving energy systems solutions from concept to market
- Where partners go to **de-risk experimentation**
- Expertise in integrated systems and low-carbon gases, liquids, infrastructure and efficiency

We develop, scale and deploy solutions in the transition to low-carbon, low-cost energy systems

We work collaboratively to address critical energy challenges impacting gases, liquids, efficiency and infrastructure

GTI Energy Gasification Heritage

MSW Feedstock Resource

• **MSW** could generate a considerable tipping fee (~\$58/ton) but is heterogeneous, hard to handle, and contains plastics

MSW Feedstock Resource

- **The Opportunity:** Large municipalities send very significant amounts of MSW to landfill every year.
- **Example:** Los Angeles:
 - Generates over 30 million tons of waste every year of this, 11 million tons per year is non-recyclable MSW, and is sent to landfill (Los Angeles County Department of Public Works, 2022)
 - A 1000 TPD facility would never run out of feedstock in the LA area (330,000 tons/year, assuming 90% availability)
 - -MSW can generate a considerable tipping fee (~\$58/ton)
- **The Challenge:** MSW is heterogeneous, hard to handle, and contains plastics. Cost-effective, practical reliable conversion technology is needed.

Comparing Biomass, MSW, and Waste Plastics

As

- Biomass: Loblolly Pine, Southern Georgia, USA
- MSW: Recycle Ann Arbor, MI.
 - Only paper and plastic fractions
- Plastics:
 - 90 wt%: "waste plastic" from EFS Plastic in Ontario, Canada
 - 10 wt%: film plastic meat packaging - Sealed Air Corporation, SC

Example Pellets:

Biomass (50%): MSW (50%)

Biomass (50%): Plastic (50%)

Biomass (50%): MSW (25%): Plastic (25%)

A) Biomass (Loblolly pine), B) MSW; C) Plastic.

2024 FECM/NETL SPRING R&D PROJECT REVIEW MEETING APRIL 23-25, 2024 – PITTSBURGH, PA

Comparing Biomass, MSW, and Waste Plastics

- MSW and Plastics waste displayed similar high ash content and low fixed carbon content.
- Significant differences between biomass ash and ash from the two other feedstock types

Sample ID		Biom	ass	MS	W	Plastic v	vaste		
Proximate Analysis result (wt.%)									
	Method	adb^{I}	db ²	adb	db	adb	db		
Inherent moisture content	ISO 11722: 2013 [5]	5.4	-	1.5	-	0.9	-		
Ash yield	ISO 1171: 2010 [6]	1.0	1.0	12.7	12.9	7.8	7.9		
Volatile matter content	ISO 562: 2010 [7]	81.1	85.8	81.1	82.3	87.2	88.0		
Fixed carbon content	By difference	12.5	13.2	4.7	4.8	4.1	4.1		
	Bulk de	nsity (kg/n	1 ³)						
Bulk density		228	.3	183	.3	145	.8		

¹-adb- Air dry basis; ²-db- Dry basis, ³⁻ Not determined

Sample ID / Properties	Biomass ash	MSW ash	Plastic waste ash
Ash fusion temp	eratures (oxidising at	mosphere) (°C)	
Initial deformation temperature	1190	1130	1160
Sphere temperature	1210	1150	1170
Hemispherical temperature	1250	1190	1180
Flow temperature	1310	1210	1210
Ash fusion temp	eratures (reducing at	nosphere) (°C)	
Initial deformation temperature	-	1120	1140
Sphere temperature	_	1140	1150
Hemispherical temperature	-	1180	1160
Flow temperature	_	1210	1190
	XRF results (wt.%)		
Al ₂ O ₃	31.69	10.09	10.38
CaO	5.19	17.64	20.64
Cr ₂ O ₃	0.03	1.83	0.89
Fe ₂ O ₃	3.63	8.61	5.56
K ₂ O	0.63	0.42	0.65
MgO	2.03	1.90	4.36
MnO	0.03	0.18	0.13
Na ₂ O	0.15	7.16	5.68
P ₂ O ₅	0.92	0.36	0.38
SiO ₂	48.65	48.20	45.88
TiO ₂	1.51	2.34	3.51
V_2O_5	0.05	0.01	< 0.005
ZrO ₂	0.09	0.01	0.02
BaO	0.25	0.07	0.20
SrO	0.24	0.02	0.04
ZnO	0.02	0.09	0.16
SO ₃	4.73	0.54	0.51
Loss on ignition	0.16	0.53	1.00

- Observations: Feeding biomass, MSW, and other waste feedstocks of interest into pressurized gasifiers has been found to be very challenging – there have been recent failures by commercial organizations.
- Operation at high pressure is required for all gasification concepts other than gasification-to-power.
- Only gasification followed by synthesis allows for conversion of waste feedstocks with high thermal efficiency and maximum revenue generation.
- If these feedstocks can be **pyrolyzed** first, at temperatures up to about 650 C, then only the fixed carbon and ash will remain in the solid phase.

Process Concept: PyroPOX

• CONTINUED:

- Biomass, mixed MSW fractions, and plastics wastes: 80-90% by mass of the feedstock can be pyrolyzed to a stream of hot, volatile process vapor.
- Ash and fixed carbon can be recovered separately and represent sequestered carbon if landfilled/buried.
- Tars, methane, etc. fully converted in downstream **POX** (partial oxidation) step **PyroPOX**
- Based on preliminary TEA work, the PyroPOX approach could replace multiple feedstock-conditioning steps and would make solids conversion simpler and easier.
- Could reduce the CAPEX of the gasifier island (including feedstock conditioning, handling, and pressurized feeding) of a gasification-to-X facility **by about 50%.**

Process Concept: PyroPOX

- Implementation:
- It is not practical to introduce air into the pyrolysis stage

 this would leave high concentrations of N₂ in the syngas.
- Indirect heating is not practical heat transfer from external combustion to a pyrolysis reactor does not scale well.
- BUT: Renewable electrical power has already become the most affordable source of electricity in many regions where wind and solar have been built out at utility scale.
- Pyrolysis powered by renewable electricity is costeffective, can reduce the size of the air separation facility needed by a gasification facility, reduces CAPEX, and provides a nitrogen-free process vapor stream.

Trends in the cost of electricity, by source, through 2023 – from Lazard, Inc.

- Waste stream pyrolysis requires a robust, flexible solution that provides very high operability and rates of heat transfer to the feedstock.
- Wolverine[™] is based on previous DOE-funded biomass conversion work involving a paired, interdigitated auger system
- Twin auger devices are already used in challenging applications like polymer melting, blending, and extrusion. Also Funke, et. al: Pyrolysis of waste tires
- Very high rates of convective heat transfer can be achieved comparable with bubbling fluidized beds.
- Heat transfer from electrical heating system to process is maximized by taking advantage of all available surface area – unique approach has been developed.

Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application

A. Funke^{*}, R. Grandl, M. Ernst, N. Dahmen Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Germany

- Why did we call it "Wolverine"?
- A wolverine is a very tough arctic scavenger it frequently chews up the bones of much larger animals to extract all remaining nutrition, even if the carcass is frozen solid.
- In the same way, the twin-pyrolysis-auger will carry out comprehensive devolatilization of challenging feedstocks, followed by gasification or partial oxidation of the volatile gases

• Use of two augers and optimized heating approach increases available heat transfer area by a factor of 3-5 relative to single-screw heated auger systems.

ENERGY

- Can carry out comminution and devolatilization simultaneous and thereby eliminates the need for costly feedstock preparation steps like hammermilling.
- Demo scale: MSW shredded to 2" screen size; no need to remove fines.
- Designed to operate at the same pressure as the POX and synthesis stages (300-500 psig) no need for gas cooling or compression upstream of the POX stage.
- The pressure shell remains at ambient temperature and is separated by insulation from the heated screw assembly, which turns in its own heated auger sleeve.

• Exterior pressure shell remains near ambient temp

GTI ENERGY

- Insulation layer inside pressure shell
- Heaters in annulus around auger sleeve auger sleeve sees up to 600 C.
- Feedstock conversion annulus (orange)
- Auger made of heavy-wall pipe, with flights welded around the outside – allows heater access to interior
- Bayonet heaters reach into augers and are located in hollow pipe comprising auger shaft

• Augers and flights – adds to high specific surface area for heat transfer from heating elements to feedstock.

GTI ENERGY

- Very compact system geometry
- High degree of process intensification
- Highly effective integration of renewable energy in robust, flexible devolatilization approach.

Application: PyroPOX – MSW to Renewable Methanol

Application: PyroPOX – MSW to Renewable Methanol

Objectives	Metrics	Assessed PyroPOX Performance	Baseline Performance
>50% lifecycle	% lifecycle carbon	~71% reduction when compared to	Case 3 in DOE/NETL-341/101514
GHG intensity	intensity change	baseline. Initial lifecycle evaluation	– natural gas auto-thermal
	as measured by	led to a carbon intensity of 511.5 kg	reforming process without
	kg CO _{2e} /tonne	CO _{2e} /tonne MeOH, assuming a 50%	carbon capture and sequestration
	MeOH.	MSW biogenic content.	(CCS): Carbon intensity of 1771.2
			kg CO _{2e} /tonne MeOH.
Reduce energy	% of energy	~59% reduction when compared to	Case 3 in DOE/NETL-341/101514
consumption	consumption	baseline. Initial process evaluation	– natural gas auto-thermal
associated	change in	led to an energy consumption of	reforming process without CCS:
with	GJ/tonne MeOH.	13.2 GJ/tonne MeOH, considering	Energy consumption of 32.1
production		that MSW is a "waste" feedstock	GJ/tonne MeOH.
		without any inherent energy.	
Reduce cost	2024 levelized	<u>~12% reduction</u> when compared to	North America pricing of
	cost of MeOH.	baseline. Initial techno-economic	\$575/tonne MeOH as published
		evaluation led to an estimated	by Methanex.
		levelized cost of \$509/tonne MeOH.	

Results and Conclusions

- The GTI "Wolverine[™]" has the potential to enable cost-effective conversion of economicallyadvantaged waste feedstocks like MSW
- Process intensification is the key leveraging cost-effective renewable electricity and eliminating CAPEX and OPEX requirements (sorting, drying, hammer-mills, etc.)
- Enables PyroPOX conversion concept when integrated with GTI's very compact, flexible, and robust R-Gas technology.
- Integration with H2 production via electrolysis has the potential to enable further synergies and process intensification.
- Case Study: Renewable MeOH from MSW:
 - -71% reduction in carbon intensity
 - -59% reduction in energy intensity
 - -12% reduction in production cost vs MeOH from fossil feedstocks

solutions that transform

GTI Energy develops innovative solutions that transform lives, economies, and the environment