

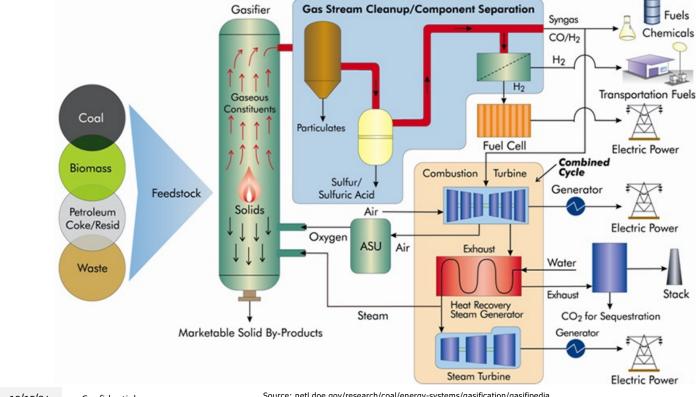
Integrated Gasification and Electrolysis: Opportunities and Challenges

October 9th, 2024

Topics

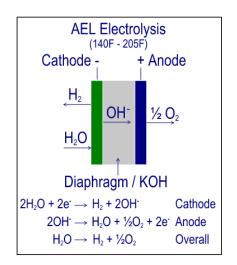
- I. Introduction to KP Engineering
- II. Overview of Gasification and Electrolysis
- III. Potential Flow Schemes
- IV. Project Applications
- V. Challenges and Opportunities
- VI. Key Takeaways

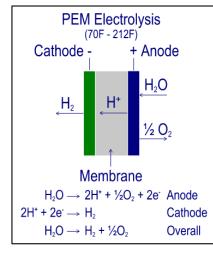
KP Engineering (KPE) is an engineering, procurement, fabrication, and construction management firm focused on decarbonizing the energy industry.

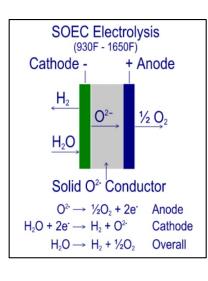

- Acquired by The Shaw Group (largest pipe fabrication company in the world) in 2023 and now part of Shaw Projects & Modules
- Headquarters and execution centers are in Texas, Louisiana, Middle East, and North Africa
- Focused on decarbonizing the energy industry:
 - Solutions from syngas pathways
 - The refining/fuels sector
- Service offering includes:
 - Technology Licensor Support
 - Front-End Loading (FEL)
 - Engineering and Procurement
 - Fabrication
 - Integrated EPF/EPFCm/EPFC
 - Commissioning and Start Up

Overview of Gasification

The gasification process is used to transform a carbonaceous fuel into a syngas product.


10/15/24 4


Confidential


Source: netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia

Overview of Electrolysis

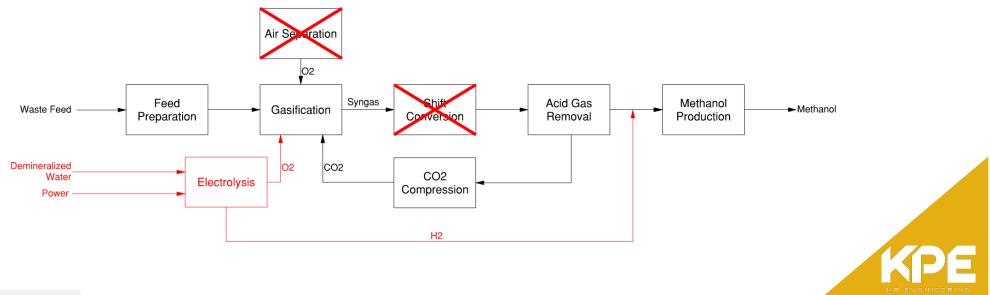
- Electrolysis is the process of using electricity to split water into hydrogen and oxygen.
- Three types of electrolysis currently considered commercially viable:
 - Alkaline Electrolysis (AEL)
 - Proton Exchange Membrane (PEM)
 - Solid Oxide Electrolysis (SOEC)

5 10/15/24 0

5/24 Confidential

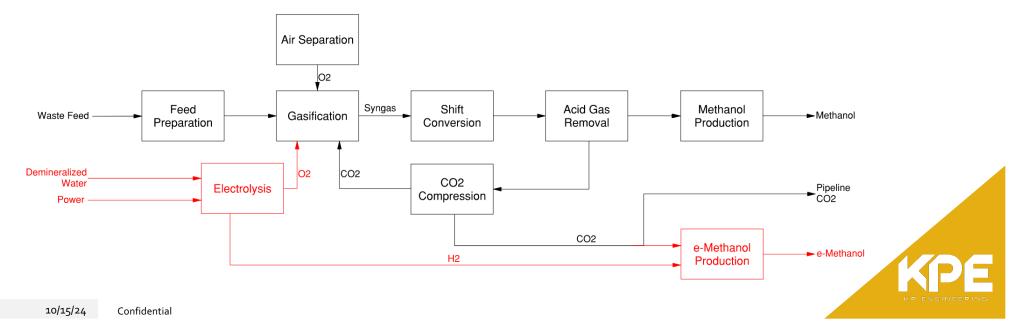
Synergies


- Renewable fuel technologies utilizing gasification for syngas production makes use of both electrolysis products (hydrogen and oxygen).
- Oxygen from the electrolysis unit can be used within the gasification unit.
- Hydrogen from the electrolysis unit can be sold as a product or used as a feedstock in the downstream system, depending on the final product.
- KPE's evaluation has focused on facilities where methanol was the final product.


Flow Schemes

- Typical waste to methanol plant
 - Oxygen provided by cryogenic air separation unit
 - Shift conversion and acid gas removal of syngas before feeding the methanol unit

Flow Schemes


- Electrolysis integration with hydrogen injection into the syngas
 - Air separation unit and shift conversion are not required
 - Size of acid gas removal (AGR) unit can be reduced
 - Assumes electrolysis is integrated in the original design of the plant

Flow Schemes

9

- Electrolysis integration with hydrogen combined with carbon dioxide from the AGR
 - Plant can be designed and operated without electrolysis
 - Air separation unit, shift conversion, and full-sized AGR are still required
 - Separate e-methanol units are required to convert carbon dioxide and hydrogen to methanol

- The "Stage Gate" process is used to frame project economics as well as risks and opportunities
- Risk workshop is typically held early in project development
 - Define project objective and what constitutes success
 - Involve all decision-makers
 - Consider direct and indirect project risks
 - Determine mitigation strategies for each risk
- Risk register is maintained and reviewed throughout the project lifecycle



- Methanol end product capacities -
 - Gasification only: from 400 Metric TPD to 1,700 Metric TPD
 - Electrolysis, achieving full carbon conversion: 900 Metric TPD to 4,000 Metric TPD
 - Perspective: large coal-based methanol plant approximately 7,200 Metric TPD
- Opportunities and Risks -
 - Increase production through incorporation of electrolysis
 - Overall economics
 - Utility availability

Key Project Metrics	
Hydrogen Consumption	100,000 NCMH to 225,000 NCMH
Number of Electrolysis Units Required	20 to 45
Power Consumption	Up to 6.4 kWh/NCM
Total Power Required	Up to 1.21 GW

Challenges & Opportunities

Challenges	Opportunities
Technology Integration	 Select best electrolysis technology to integrate with plant process
Green Electricity Demand	 Geographic location with higher green energy availability Green energy innovation over time
Capital Cost	 Transfer scope from the electrolysis units and combine the balance of plant in the most economic way
Lead Time for Electrolysis Unit	 Repackage electrolyzer unit to require fewer modules and integrate into the overall construction strategy for the plant

10/15/24 14 Confidential

Key Takeaways

- Electrolysis can be used to increase production in biomass-to-methanol units
- Technology integration faces some challenges
- Many opportunities for innovation and further development

10/15/24 15

Thank you.

Ray Wortham: <u>RWortham@KPE.com</u> | Sara Brown: <u>SBrown@KPE.com</u>

