

CLARIANT

EARTH®: Enhancing Steam Reforming Operation and Reducing Carbon Footprint

SANJEEV SEKHRI FRANZ PETZOLD GSTC – October 2024

This document and all information are confidential and may not be used, reproduced or distributed without prior authorization of TECHNIP ENERGIES

Table of contents

01.
Introduction

04. EARTH® benefits

02.

Background and Technology

03.

First applications

05.

Case studies

06.

Summary

01

Introduction

Clariant is a Global catalyst manufacturer with a broad portfolio, building on innovation and partnerships

Production sites

15 production sites on 4 continents

Locations

31 locations in 15 countries

R&D Centers

10 R&D centers worldwide

Sales in 2023

1 000 in million CHF

People

2,161 Staff in FTEs at year-end

Catalysts Applications

SYNGAS

- Ammonia
- Methanol
- Hydrogen
- Fuel Cell
- · GTL/Fischer-Tropsch
- · Low-carbon ammonia
- · Low-carbon methanol

REFINERY / FUELS

- Gasoline Isomerization
- · Gasoline from Olefins
- · Diesel from Olefins
- · Diesel Dewaxing
- Fuels from alternative feedstocks
- Purification of gaseous and liquid streams

PETROCHEMICALS

- Steam cracker
- · Olefins purification
- · Ethylene derivatives
- Styrene
- On-purpose Propylene
- · On-purpose Butylene
- Polypropylene

CHEMICAL CATALYSTS

- Oxidation
- Hydrogenation
- Bio-based feedstock
- Fine Chemicals
- · Custom Catalysts

EMISSIONS CONTROL

- Industrial off-gas treatment
- Exhaust gas treatment for stationary engines
- Zeolite powders for diesel exhaust applications

CLARIANT

CONFIDENTIAL - T.EN EARTH® Technology

Technip hydrogen heritage

Member of

Hydrogen Council

~60 years of T.EN hydrogen technology and product leadership

280+

H₂ and Syngas references

>30%

Global installed H₂ capacity

50+

References of carbon capture (CO₂) from H2 plants

50+

Years of extensive H₂ experience

40+

Plants for Air Products *
* Global alliance since 1992

* Global alliance s

40+

H₂ plants w/ pre-reformer for multi-feedstock

14+

H₂ plants with TPR®

3

applications of

EARTH®

- Leading-edge hydrogen technology with high-temperature reaction kinetics expertise
- Numerous in-house technological advances, e.g., in steam reforming and feed flexibility (>60 plants)
- Presenting many industry's firsts, e.g., PSA, pre-reformer, high quality steam, cost effective revamp for capacity increase/ more efficiency, etc.
- Decarbonized (Hydrogen) fuel: a) 100% H2 firing successfully tested for LSV burners; b) implemented in T.EN steam crackers with up to 85% H2 firing

Technip Portfolio summary

leading suite of low-cost, low-carbon hydrogen generation solutions

Up to 99+% reduction in carbon footprint compared to traditional hydrogen production

- from ~10 down to ~0.1 kilogram CO₂ per kilogram H₂
- carbon-negative KPI in case of renewable feedstock

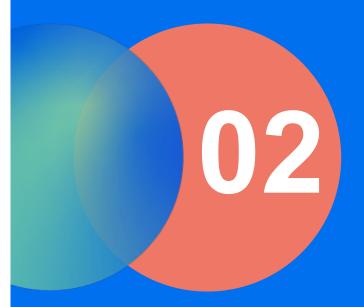
Maximum hydrogen yield

Minimum energy demand (fuel + power)

Highly-efficient carbon avoidance and capture utilization & storage (CCUS) techniques

Lowest (levelized) cost of hydrogen "LCOH"

Comprised of "flight proven" proprietary technologies and equipment



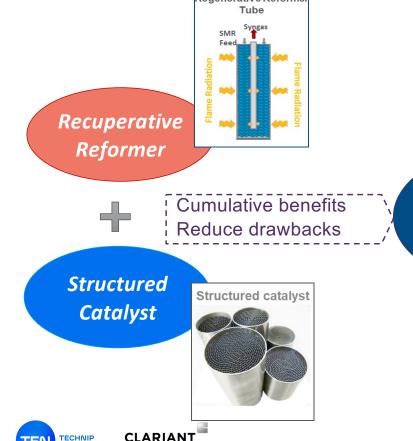
Full suite of solutions, flexibility to be tailored to every application

 decarbonization of refining, power, chemicals, LNG etc.

Built upon T.EN's proven suite of technologies for a (ultra-) low-carbon flowsheet \rightarrow for both grassroots and retrofit applications

02 Background and Technology

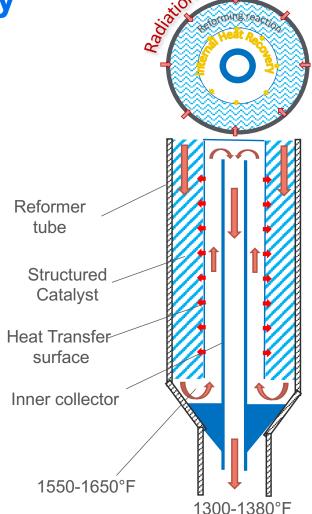
EARTH® at a glance



EARTH® Technology

Co-Developed by Technip Energies and Clariant

EARTH®

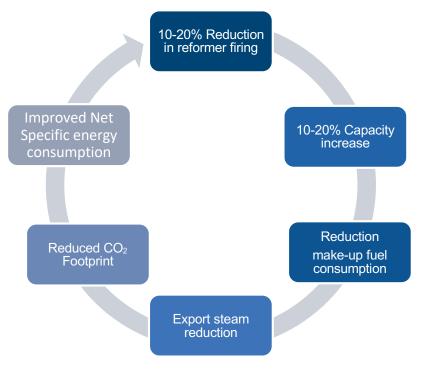

- Internal heat recovery resulting in reduced external heat demand;
- Highly active low pressure drop catalyst;
- Highly customizable towards client requirements;
- Drop-in solution for existing plant revamps <u>and</u> new installations.

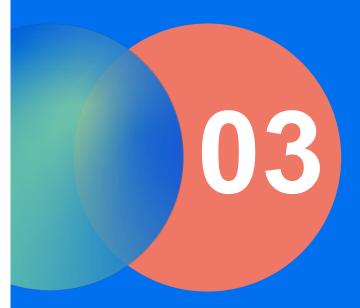
EARTH® Technology

Enhanced Annular Reformer Tube for Hydrogen and Syngas

Achieves simultaneously higher catalytic activity & heat recovery

- Drop in solution applicable to new and existing reformer tubes
- Internal heat recovery resulting reduced firing demand
- Highly active low pressure drop catalyst
- Fuel savings and CO₂ footprint reduction;
- Enabling low carbon footprint hydrogen production in combination with CO₂ capture and utilization (Blue H_2);


EARTH® tubes in-tube thermocouples


EARTH® Technology

- Innovative, proprietary reforming technology by Technip Energies
- High Performance Structured catalyst co-developed by Clariant

EARTH® is a <u>drop-in solution</u> - can be applied to new and existing reformer tubes.

- Heat recuperative technology reduced fired heat demand resulting in reduced fuel consumption.
- Increased productivity by higher throughput and improved heat utilization in SMRs;
- Fuel savings and CO₂ footprint reduction;
- Enables low-carbon hydrogen production (Blue H₂);
- Applicable for revamp and grassroot applications;
- Proven in operation.

First Applications

References

First application of EARTH®

Revamp of existing syngas plant in southern Europe

- 10 tube top-fired reformer with conventional tube dimensions
- Goal: energy savings
- Short project time for executing
- Combined with catalyst tube replacement

Short execution time - Minimum time at site

- · Catalyst changeout or Tube replacement
- Conventional start-up

First Application timeline

Month 0: design internal and catalyst

Tube installation with EARTH® inside and EARTH® in operation

EARTH® References

References

1st reference Ak-Kim, Turkey

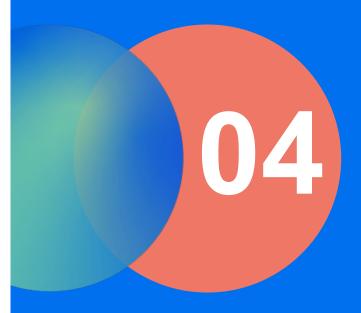
Syngas plant in operation since 2019

	Conventional pellet catalyst	EARTH [®]
CO ₂ emission	Base	-20%*
Fuel consumption	Base	-37%
Approach to equilibrium	< 10°C	< 3°C
Export steam	Base	-57%
Catalyst lifetime	>4 years	>>6 years
Pressure drop	~2 bar	<1.5 bar
Tube metal temperature	base	-10°C

^{*} CO is part of product so no CO2 from process gas to fuel

2nd reference, Europe

- On-site delivery of EARTH® assembly (including catalyst)
- Installation inside existing reformer tubes within shutdown window
- In operation since spring 2022


3rd reference Repsol, Europe

Start-up Q1 2024

- Grassroot reformer
- Biofuels application

Capacity increase Energy Savings New Hydrogen Plants

Installation

EARTH® is a <u>drop-in solution</u> and can be applied to new as well as existing reformer tubes.

Installation comparable to a catalyst change-out

- Can be matched with typical turnaround schedule
- Saves tube lifetime for existing reformer tubes

Installation of EARTH® can be combined with high value maintenance

 When catalyst tube replacement required due to end of life condition, take benefit of new catalyst tube materials

Tube installation with FARTH®

EARTH® tubes in-tube thermocouples

Benefits compared to conventional SMR

Heat recovery <u>plus</u> structured catalyst allows for increased throughput per tube

- Internal heat recovery reduces firing demand;
- High surface area catalyst ensures high catalyst activity;
- Low pressure drop catalyst avoids hydraulic limitations in reformer tube;
- Internal heat recovery combined with the structured catalyst reduces Tube Wall temperature.

Heat recovery <u>plus</u> structured catalyst tailored to achieve specific plant requirements:

- · Capacity increase scenario in existing plant;
- Energy savings scenario in existing plant;
- Low CO₂ footprint grassroot plant.

For capacity increase compared to conventional SMR

EARTH® enables capacity increase with minimal in the plant:

- Avoiding limitations in firing system;
- No hydraulic limitations in the reformer;
- Decreased hydrocarbon consumption per hydrogen produced;
- Decreased CO₂ emissions per hydrogen produced.

Minimal modifications in plant required.

EARTH® performance

- Feed 10-20% increase*
- Fuel up to 30% lower*
- Nydrogen CO₂ footprint up to 10% lower*
- Ratio of feed + fuel to hydrogen improved*
- Bridge wall T equal or lower*
- Steam production lower or equal*
- Pressure drop lower or equal*
- Tube metal temperature usually lower*

For Energy savings compared to conventional SMR

EARTH[®] is a direct drop-in solution for energy savings:

- Lower emissions;
- Lower hydrocarbon consumption;
- Lower steam production;
- Excellent fit with CO₂ capture technologies.

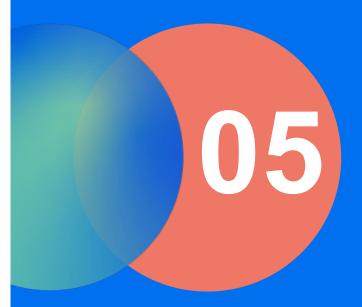
Minimal modifications in plant required.

EARTH® performance

- Feed same or slightly lower*
- Fuel up to 50% lower*
- Hydrogen CO₂ footprint up to 10% lower*
- Ratio of feed + fuel to hydrogen improved*
- Bridge wall T lower*
- Steam production up to 50% lower*
- Pressure drop lower or equal*
- Tube metal temperature lower*

In grassroot compared to conventional SMR

EARTH® enables further heat integration and thus highly energy efficient plant:


- Lower emissions;
- Reduced plot size;
- Tailor-made performance to match refinery steam demand.
- Excellent fit with CO₂ capture technologies.

EARTH® performance

- Feed same or slightly lower*
- Fuel up to 50% lower*
- Hydrogen CO₂ footprint up to 10% lower*
- Ratio of feed + fuel to hydrogen improved*
- Bridge wall T equal or lower*
- Steam production lower or equal*
- Pressure drop lower or equal*
- Tube metal temperature usually lower*

EARTH® case studies

Capacity increase scenario Energy savings scenario

EARTH® case studies

Capacity increase scenario for US based plant

PARAMETER	UNIT	ORIGINAL HMB	MAXIMUM CAPACITY WITH EARTH®	
H ₂ Capacity	MMSCFD	65	80	(+23%)
NG per H ₂ produced	ton/ton	3.53	3.40	(-4%)
RFG fuel per H ₂ produced	ton/ton	0.60	0.55	(-7%)
Export steam per H ₂ produced	ton/ton	8.07	5.95	(-35%)
Flue Gas Flowrate to fan	m ³ /h	base	+ 15%	
CO ₂ emissions per H ₂ produced	ton/ton	10.4	9.9	(-4%)
Catalyst outlet temperature	°F	1515	1549	
PGB inlet temperature	°F	1515	1335	ļ
Bridge wall temperature	°F	1836	1904	
Tube wall temperature (TWT)	°F	1594	1645	/

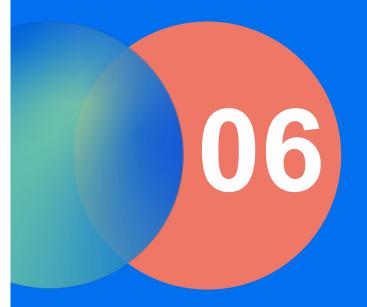
Capacity increase from 65 to 80 MMSCFD is achieved with EARTH®:

- No change in fans, convection section, reformer, steam system, etc;
- Minor drop absolute export steam flowrate
- Expected modifications: burner gun, PSA revamp, minor modifications in cooling train.
- With same reformer pressure drop as original capacity
- Decrease hydrocarbon consumption and CO2 emission per hydrogen produced.

EARTH® case studies

Energy intensification with EARTH®

PARAMETER	UNIT	HIGH HEAT RECOVERY	HIGH HEAT RECOVERY WITH EARTH®		
H ₂ Capacity	MMSCFD	45	45	(-0%)	
NG feed per H ₂ produced	ton/ton	2.7	2.7	(-0%)	
NG fuel per H ₂ produced	ton/ton	0.6	0.3	(-50%)	
Export steam H ₂ produced	ton/ton	6.1	1.2	(-80%)	
CO ₂ emissions per H ₂ produced*	ton/ton	9.1	8.2	(-10%)	
Catalyst outlet temperature	°F	1706	1706		
Tube outlet temperature	°F	1706	1346		


^{*}Conventional SMR based plant has CO₂ emissions of 9-11 ton CO₂/ ton H₂ produced

CO2 emission reduction with EARTH®:

- Decrease in hydrocarbon consumption and CO₂ emission per hydrogen produced.
- Reduced tube metal temperature and thus longer tube lifetime.
- For grassroot plant, reduced reformer size with reduced emissions.
- Excellent fit with CO₂ removal technology

06 Summary EARTH®

Conclusions

EARTH® is a proven technology that plays an important role in today's world energy transition

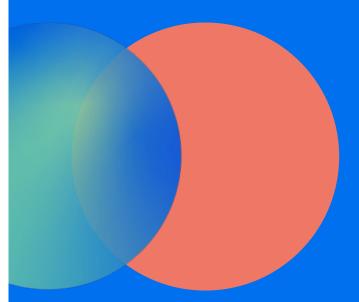
Tailor made tubes and internals

Reduced CO₂ emissions

High heat transfer and recovery

Energy savings (feedstock and fuel) of up to 10%

High activity and low pressure drop


Capacity Increase up to 20%

Stable and robust catalyst

Thank You

Sanjeev.Sekhri@TechnipEnergies.com +1 909 630 9662

