Johnson Matthey Inspiring science, enhancing life

Johnson Matthey and bp: FT **CANS**[™] Technology – Enabling Waste to Jet Fuels

2010/0000

Global Syngas Technologies Council 2020 Conference 27Oct20

Overall XTL Flowsheet

- For natural gas / CO2 feedstocks JM also provides the syngas generation technology and catalysts
- For MSW, biomass and coal feedstocks, JM can provide the secondary gas clean-up

JM

History of JM / bp development in FT

Benefits confirmed by JM/bp at Nikiski Demonstration Unit		
No Catalyst Movement	No catalyst loss in productBenign environment	
Simple Design	Easy to operateMinimal scale up risk	
Developments easy to incorporate	Demonstrate on single tube	
Modular	Increase capacity by adding tubes	
Well proven technology	Many manufacturers of equipmentNot proprietary supply	
Attractive product slate	 High S-F alpha Maximise middle distillate production after product upgrading (hydroprocessing /fractionation) 	

Benefits of FT CANS technology compared to conventional Fixed-Bed FT Technology

 3 fold increase in production for same size reactor
Larger tubes, low weightTube numbers reduced by 95%
• FT Unit cost reduced by \sim 50%
 Volumes reduced by >50% 3 years life without regen. expected
 Prefilled in factory Spent catalyst returned in CANS carriers for metals recovery
 >90% overall CO conversion in single stage recycle loop which can operate with >50% inerts

Long-term aviation industry goals

50% reduction in CO2 by 2050

- The aviation industry and IATA have committed to halving aviation emissions by 2050 compared to 2005 levels and carbon neutral growth from 2020
- Achieving this requires a concerted effort across all aspects of the industry
- Biofuels are a critical component of aviation decarbonization strategy and the industry is expecting them to deliver 30-40% of the 2050 emissions reduction target

Source: International Energy Agency (IEA)

What is sustainable aviation fuel?

- A jet fuel produced from sustainable, renewable feedstocks
- It must be blended with regular jet fuel before use in aircraft
- Once blended, it is identical to regular jet fuel, and fully approved for use
- Using sustainable aviation fuel results in a reduction of CO₂ emissions compared to fossil jet fuel over the lifecycle of the fuel
- Some typical feedstocks used are
 - Used cooking oil and other waste oils
 - Solid waste from home and businesses that would otherwise go to landfill or incineration

* IRENA estimates of potential biomass supply

Why municipal solid waste to biojet?

Feedtsock potential*

(mmboe/yr)

- Feedstock volume match with product demand
- Municipal solid waste, MSW, is the lowest cost feedstock available at suitable scale
- Feedstock is not suitable for reuse/recycling
- MSW is gasified to syngas
- Purified syngas is converted to wax using FT technology
- Wax product is upgraded by hydrocracking/isomerization to sustainable fuels

Increasing cost of feedstock

Fulcrum Sierra Biofuels Biorefinery [courtesy Fulcrum Bioenergy]

Waste to biojet commercial production

- **BP** Ventures investment in Fulcrum Bioenergy
- First commercial-scale plant in Sierra, Nevada, US under construction
- It will convert ca. 175,000 tons of municipal solid waste • feedstock that would otherwise be landfilled, into a lowcarbon, renewable transportation fuel
- First plant designed to produce ca. 11 million gallons of . sustainable fuel each year
- BP/JM FT CANS[™] technology was selected by Fulcrum • Bioenergy for its first commercial-scale waste to sustainable fuels facility

Awards and Acknowledgements

Winner – Bioenergy Award

Winner – Clean Energy Award

Johnson Matthey Inspiring science, enhancing life

Contact details: Paul Ticehurst Senior Business Development Manager paul.ticehurst@matthey.com

2022030300