

DRYREF[™] & SYNSPIRE[™] Innovation for HyCO applications

T. Bartesch, K. Wawrzinek, A. Behrens, <u>A. Peschel</u> Global Syngas Conference, 2020

Making our world more productive

Agenda.

- 1. BASF & LINDE: Innovation through partnership
- 2. Process Introduction
- 3. Case Evaluation
- 4. CO₂ Footprint
- 5. Applications
- 6. Summary

- 1. BASF & LINDE: Innovation through partnership
- 2. Process Introduction
- 3. Case Evaluation
- 4. CO₂ Footprint
- 5. Applications
- 6. Summary

Joining forces for the development of a unique catalyst for dry reforming: a longterm journey

Partnering with aknowledged R&D institute and universities

Karkruhe Institute of Technology	te
	Bundesministerium für Wirtschaft und Energie

Funded by BMBF under: 03ET1282 & 0327856

Joint Development Lab phase Mini plant Pilot Commercial High-throughput Piloting in Linde Pilot experiments Reformer Lab and miniplant testing hte 📕 - BASI

Lind

First commercial reference in industrial Linde HyCO unit 08/2017-07/2018 Full product utilization

- 1. BASF & LINDE: Innovation through partnership
- 2. Process Introduction
- 3. Case Evaluation
- 4. CO₂ Footprint
- 5. Applications
- 6. Summary

Process Introduction Simplified process arrangement

- Simplified typical process arrangement based on natural gas as feedstock and Steam Methane Reforming (SMR)
- Pre-reformer as optional equipment
- H_2/CO product ratio as target

Process Introduction CO₂ recycle and CO₂ import

Process Introduction DRYREFTM process arrangement

Linde

- Application:
 - DRYREF process is typically used for natural gas based H₂+CO plants
 - CO₂ recycle to SMR with optional additional CO₂ import
- Key advantages:
 - DRYREF catalyst allows lower S/C ratio which improves OPEX and energy efficiency

- 1. BASF & LINDE: Innovation through partnership
- 2. Process Introduction
- 3. Case Evaluation
- 4. CO₂ Footprint
- 5. Applications
- 6. Summary

Case Evaluation Scenario 1 – <u>without</u> CO₂ import

Conventional process

- Steam to process: S/C 2.5 mol/mol
- Full CO₂ recycle
- No additional equipment

Conventional process incl. Pre-Reformer

- Steam to process: S/C 2.0 mol/mol
- Full CO₂ recycle
- Additional equipment: Pre-Reformer

DRYREF process

- Steam to process: S/C 1.5 mol/mol
- Full CO₂ recycle
- BASF catalyst (SYNSPIRE[™] G1-110)
- No additional equipment

Case Evaluation Scenario 2 – including CO₂ import

Conventional process

- Steam to process: S/C 2.5 mol/mol
- Full CO₂ recycle + CO₂ import
- No additional equipment

Conventional process incl. Pre-Reformer

- Steam to process: S/C 2.0 mol/mol
- Full CO_2 recycle + CO_2 import
- Additional equipment: Pre-Reformer

DRYREF process

- Steam to process: S/C 1.5 mol/mol
- Full CO₂ recycle + CO₂ import
- BASF catalyst (SYNSPIRETM G1-110)
- No additional equipment

- 1. BASF & LINDE: Innovation through partnership
- 2. Process Introduction
- 3. Case Evaluation
- 4. CO₂ Footprint
- 5. Applications
- 6. Summary

CO₂ Footprint DRYREF as CO₂ consuming process

- CO₂ Import is used to compensate direct CO₂ emissions from reformer flue gas
- Plant design for high air preheat temperature and minimum steam production
- Break-even to negative CO_2 emissions for DRYREF at H_2/CO product ratio of 1.5 (molar basis)

- 1. BASF & LINDE: Innovation through partnership
- 2. Process Introduction
- 3. Case Evaluation
- 4. CO₂ Footprint
- 5. Applications
- 6. Summary

Applications DRYREF advantages can be obtained in many applications

- Most syngas downstream processes require SN=2 or below
- Hence, efficiency gain by DryRef can be obtained for almost all downstream process integrations compared to conventional SMR
- Applications such as acetic acid, formic acid production, MEG and hydroformylation to aldehydes have overall H2/CO demand of 1
- Hence, these downstream needs can be addressed with negative CO2 footprint – already now!

Applications DRYREF in combination with Direct DME Synthesis

Reference process

Conventional two step route to DME

→ Conventional DME production requires two steps from syngas including MeOH synthesis limited by thermodynamics

Linde-BASF Direct DME

- → Linde-BASF Direct DME technology eliminates one process step and takes advantage of favourable thermodynamics for DME synthesis
- \rightarrow Specific catalyst developed on-purpose
- → Many process configurations possible, CO2 rich recycle from DME synthesis favors DryRef with Direct DME as best process option for small and medium scale plants

optional

- 1. BASF & LINDE: Innovation through partnership
- 2. Process Introduction
- 3. Case Evaluation
- 4. CO₂ Footprint
- 5. Applications
- 6. Summary

Summary

- DRYREF process is typically used for natural gas based H₂+CO plants
- BASF catalyst (SYNSPIRE[™]G1-110) offers possibility for operation at low S/C ratio without pre-reforming
- Energy Efficiency and OPEX is highly beneficial compared to conventional process arrangements
- CAPEX is highly competitive for new built plants
- CO₂ footprint is beneficial compared to conventional process
- CO_2 footprint is getting negative at H_2/CO product ratios below 1.5 mol/mol and minimum steam production

Outlook

- Each project is different. Linde will provide optimized tailor-made solution for your individual scenario.
- Further fields of DRYREF application:
 - Revamp projects or direct refill (customized scenarios)
 - Efficient production of H2 with low S/C ratio
 - Even lower OPEX and/or CO2 emissions for next generation catalyst DRYREF™ SYNSPIRE G2-120 in case of low H2/CO ratio

Joining forces for the development of a unique catalyst for dry reforming: where are we on our journey?

Thank you for your attention.

Linde Engineering Andreas Peschel Tel +49 89 7445-4296 andreas.peschel@linde.com www.linde.com

Making our world more productive

